Tetrahedron Letters No. 6, pp 547 - 550, 1974. Pergamon Press. Printed in Great Britain.

THE DYNAMICS OF CARBON-CARBON SINGLE BOND ROTATION IN ACYCLIC ALCOHOLS

C. Hackett Bushweller, ^{1a} Steven Hoogasian, ^{1b} and Warren G. Anderson Department of Chemistry Worcester Polytechnic Institute Worcester, Massachusetts 01609 U.S.A.

(Received in USA 5 October 1973; received in UK for publication 4 January 1974)

Although there is an increasing amount of data regarding rotation about carbon-carbon,^{2a-d} carbon-nitrogen,^{2e} and carbon-phosphorus^{2f} single bonds, there exists a dearth of information concerning the effect of hydroxyl on the dynamics of carbon-carbon single bond rotation.

Examination of the ¹H dnmr spectrum (60 MHz) of $(t-C_4H_9)_2(CD_3)COH$ (4% in CH_2CHC1 ; Figure) at -37.1° revealed a sharp singlet resonance due to tert-butyl (δ 1.045) consistent with rapid tert-butyl rotation on the dnmr time scale (eq 1).

-110.9° m-124.0° ð 0.64 80,77 81.22 -100.3° **§1.34** -120.3° -96.5° -114.5° -88.7° -110.4° (t-C₄H₉)₂(CD₃)COH t-C4H,)(CD3)2COH -43.5° -37.1°

Table. ¹ H DNMR Chemical Shifts at Slow Exchange and FreeEnergies of Activation for tert-Butyl Rotation inDeuteriated Acyclic Alcohols and Other Selected Compounds			
compound	¹ H dnmr chemical shifts for $t-C_4H_9$ at slow exchange, pp	solvent	∆G [‡] ,kcal/mol (temp. °C)
(t-C4H9) (CD3) 2COH	0.873(3H);0.969(6H)	4% by wt. in CH ₂ CHCl	8.4±0.1(-114.5°)
$(t-C_4H_9)$ (CD ₃) (C ₂ D ₅) COH	0.843(3H);0.940(3H); 0.987(3H)	4% by wt. in CH ₂ CHCl	8.9±0.1(-109.9°)
$(t-C_4H_9)$ (CD ₃) (C ₆ H ₅ CH ₂) COH	0.961(6H);1.045(3H)	4% by wt. in CH ₂ CHC1	8.9 <u>+</u> 0.1(-111.9°)
(t-C ₄ H ₉) ₂ (CD ₃)COH	0.980(3H);1.046(3H); 1.129(3H)	4% by wt. in CH ₂ CHC1	9.6±0.1(-94.6°)
	0.946(3H);1.021(3H); 1.112(3H)	4% by wt. in 60% (CH ₃) ₂ O/ 40% (CH ₃) ₂ NCHC	9.5±0.1(-94.7°)
	0.955(3H);1.043(3H); 1.120(3H)	4% by wt. in 90% CH ₂ CHC1/ 10% CD ₃ OD	9.7±0.1(-90.4°)
(t-C4H9) (CH3) 2CH	0.933(6H);0.750(3H)	5%(v/v) in CBrF ₃	6.9(-134°; See ref. 2d)
$(t-C_4H_9)$ (CH ₃) ₂ CF			8.0(See ref.2c)
$(t-C_4H_9)(CH_3)_2CC1$			10.4(See ref.2bc)
$(t-C_4H_9)$ (CH ₃) 2 ^{CBr}			10.7(See ref.2bc)
(t-C ₄ H ₉) (CH ₃) 2CI			ll.l(See ref.2c)

Upon lowering the temperature, the tert-butyl peak of $(t-C_4H_9)_2(CD_3)COH$ broadened and separated into three resolved singlet resonances consistent with slow tert-butyl rotation on the dnmr time scale and a different environment experienced by each of the three methylsof the tert-butyl group(eq 1). The observation of three <u>singlet</u> resonances for tert-butyI is also consistent with <u>fast</u> rotation of the individual methyls of tert-buty1.³ The slow exchange tertbutyl ¹H dnmr chemical shifts and the free energy of activation (ΔG^{\ddagger}) for tertbutyl rotation at or near the dnmr coalescence temperature (as determined from a complete dnmr line shape analysis) are compiled in the Table. In a similar manner, the tert-butyl ¹H dnmr spectrum of $(t-C_4H_9)(CD_3)_2COH$ separated at low temperatures into two singlet resonances at $\delta 0.873(3H)$ and $\delta 0.969(6H)$ consistent with the symmetry experienced by a static tert-butyl(Figure). Dnmr parameters and free energies of activation for tert-butyl rotation in other alcohols are compiled in the Table.

A perusal of the barriers to tert-butyl rotation in the alcohols compiled in the Table reveals a clear dependence on the steric bulk sequence: $CD_3 < C_2D_5 \sim C_6H_5CH_2 < t-C_4H_9$ established in other systems.⁴ A comparison of the rate of tert-butyl rotation in $(t-C_4H_9)(CD_3)_2COH$ to the hydrogen and halogen analogues (Table) reveals -OH to be slightly more hindering than-H, about the same as -F, and progressively less hindering than -Cl, -Br, and -I. The Table also indicates the rate of tert-butyl rotation in $(t-C_4H_9)_2(CD_3)COH$ to be relatively insensitive to three different solvent systems employed. <u>Acknowledgment</u>: We are grateful to the National Science Foundation (grant no. GP-18197) for support.

REFERENCES

- 1. (a) Alfred P. Sloan Research Fellow, 1971-74; Camille and Henry Dreyfus Teacher-Scholar, 1972-present; (b) National Science Foundation Undergraduate Research Participant, 1972-73.
- 2. (a) C. H. Bushweller, G. U. Rao, W. G. Anderson, and P. E. Stevenson, J. Amer. Chem. Soc., 94, 4743 (1972); (b) B. L. Hawkins, W. Bremser, S. Borcic, and J. D. Roberts, ibid., 93, 4472 (1971); (c) J. E. Anderson and H. Pearson, Tetrahedron Lett., 2779 (1972); (d) C. H. Bushweller and W. G. Anderson, ibid., 1811 (1972); (e) C. H. Bushweller, W. J. Dewkett, J. W. O'Neil, and H. Beall, J. Org. Chem., 36, 3782 (1971); C. H. Bushweller and J. W. O'Neil, J. Amer. Chem. Soc., 92, 6349 (1970); (f) C. H. Bushweller and J. A. Brunelle, ibid., 95, 5949 (1973); J. B. Robert and J. D. Roberts, ibid., 94, 4902 (1972).
- H. Nakanishi, O. Yamamoto, M. Nakamura, and M. Oki, <u>Tetrahedron Lett</u>., 727 (1973).
- 4. F. R. Jensen and C. H. Bushweller, Adv. Alicyclic Chem., 3, 140 (1971).