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Although there is an increasing amount of data regarding rotation about 

carbon-carbon, 2a-d carbon-nitrogen, 
2e and carbon-phosphorus 

2f 
single bonds, 

there exists a dearth of information concerning the effect of hydroxyl on 

the dynamics of carbon-carbon single bond rotation. 

Examination of the 
1 
H dnmr spectrum (60 MHz) of (t-C4Hg)2(CD3)COH (4% in 

CH2CHC1; Figure) at -37.1° revealed a sharp singlet resonance due to tert-butyl 

(61.045) consistent with rapid tert-butyl rotation on the dnmr time scale (eq 1). 
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Table. ' Ii DNMR Chemical Shifts at Slow Exchange and Free 
Energies of Activation for tert-Butyl Rotation in 
Deuteriated Acyclic Alcohols and Other Selected Compounds 

compound 1 
H dnmr chemical solvent AG*,kcal/mol 

(temp. "C) 

(t-C4Hg) (CD3) *COH 0.873(3H);0.969(6H) 4% by wt. in 8.4+0.1(-114.5~ 
CH2CHCl 

(t-C4Hg) (cD3) (c2~5)~0~ 0.843(3H);0.940(3H); 4% by wt. in 8.9*0.1(-109.90 
0.987(3H) CH2CHCl 

(t-C4Hg) (CD3) (C6H5CH2)COH 0.961(6H);l.O45(3H) 4% by wt. in 8.9+0.1(-111.9“ 
CIi2CHCl 

(t-C4Hg)2(CD3)COH 0.980(3H);1.046(38); 4% by wt. in 9.6fO.l(-94.6") 
l.l29(3H) CH2CHCl 

0.946(3H);l.O21(3H); 4% by wt. in 9.5fO.l(-94.70) 
1.112 (3H) 60% (CS3)20/ 

40% (CH3)2NCH0 

0.955(3H);l.043(38); 4% by wt. in 9.7fO.l(-90.40) 
l.l20(3H) 90% CH2CHC1/ 

10% CD30D 

(t-C4Hg) (CH3)2CH 0.933(6H);0.750(3H) 5%(v/v) in 6.9(-134O; 
CBrF3 See ref. 2d) 

(t-C4Hg) (CH3 

(t-C4Hg) (CH3 

(t-C4Hg) (CH3 

(t-C4Hg) (CH3 

E.O(See ref.2c) 

10.4(See ref.lbc) 

lO.'I(See ref.2bc) 

ll.l(See ref.2c) 

Upon lowering the temperature , the tert-butyl peak of (t-C4Hg)2(CD3)COH 

broadened and separated into three resolved singlet resonances consistent with 

slow tert-butyl rotation on the dnmr time scale and a different environment 

experienced by each of the three methylsof the tert-butyl group(eq 1). The obser- 

vation of three singlet resonances for tert-butyi is also consistent with fast 

rotation of the individual methyls of tert-butyl.' The slow exchange tert- 

butyl 
1 
H dnmr chemical shifts and the free energy of activation (AG?) for tert- 

butyl rotation at or near the dnmr coalescence temperature (as determined from 
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a complete dnmr line shape analysis) are compiled in the Table. In a similar 

manner, the tert-butyl 
1 
H dnmr spectrum of (t-C4H9) (CD312COH separated at low 

temperatures into two singlet resonances at 60.873(3H) and 60.969(6H) consistent 

with the symmetry experienced by a static tert-butyl(Figure). Dnmr parameters 

and free energies of activation for tert-butyl rotation in other alcohols 

are compiled in the Table. 

A perusal of the barriers to tert-butyl rotation in the alcohols compiled 

in the Table reveals a clear dependence on the steric bulk sequence: 

CD3 < C2D5 N C6H5CH2 < t-C4Hg established in other systems. 
4 

A comparison of 

the rate of tert-butyl rotation in (t-C4Hg)(CD3)2COH to the hydrogen and 

halogen analogues (Table) reveals -OH to be slightly more hindering than-H, 

about the same as -F, and progressively less hindering than -Cl, -Br, and -1. 

The Table also indicates the rate of tert-butyl rotation in (t-C4Hg)2(CD3)COH 

to be relatively insensitive to three different solvent systems employed. 
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